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SUMMARY 
\ 

Described herein a r e  the r e su l t s  of an exploratory experimental research 

The meteoroid hazard i s  discussed, 
program t o  determine the damage t h a t  might be i n f l i c t e d  on space radiator  con- 
f igurat ions by the impact of a meteoroid. 
and the  present knowledge of c r a t e r  formation under conditions of hypervelocity 
impact i s  analyzed The experimental program was conducted under NASA contract  
on the b a l l i s t i c s  range f a c i l i t i e s  of the General Motors Corporation Defense 
Research Laboratories i n  Santa Barbara, Cal i fornia .  G l a s s  p ro jec t i les  of 
approximately 0.016 and 0.040 gram were accelerated t o  ve loc i t ies  of 23,000 
t o  26,000 f e e t  per second and impacted against  un f i l l ed  radiator  tube configu- 
ra t ions  i n  vacuum. Variables such a s  tube l i n e r  thickness, tube inner diameter, 
armor thickness, operating temperature, and angle of impact were considered fo r  
aluminum and columbium a l loy  t a rge t s .  

Significant differences between hypervelocity impact i n to  f l a t  plates  and 
in to  aluminum and columbium tubes were observed. The l imited r e su l t s  indicated 
that in t e rna l  surface dimpling and spall ing,  a s  wel l  a s  perforation, may be 
important considerations i n  rad ia tor  tube design. 

INTRODUCTION 

An ana ly t i ca l  approach t o  the  def in i t ion  and composition of meteoroids and 
the assessment of the meteoroid damage problem f o r  waste-heat radiators  of 
space power systems are presented i n  reference 1. 
represents a de ta i led  appl icat ion of the  current concepts of the nature of 
meteoroid behavior and t h e i r  impact e f f ec t s .  
damage l i k e l y  t o  be incurred by a meteoroid co l l i s ion  can be obta.ined, for 
example, from references 2 t o  4. Unfortunately, however, very l i t t l e  back- 
ground ex i s t s  i n  the area of the phenomena of hypervelocity meteoroid impact 
under conditions l i k e l y  t o  be experienced by a space rad ia tor .  In  par t icular ,  
it i s  necessary t o  compare the predicted meteoroid hazard for the specif ied 
mission of the  vehicle against  an evaluation of the meteoroid protection asso- 
c ia ted  with the rad ia tor  s t ruc ture  as determined by the radiator  material ,  the  
rad ia tor  construction and configuration, the in f l igh t  operational environment 
of high material temperatures and low ambient pressures, and the reaction of a 
pressurized l i qu id  or gas i n  the tube. 

The analysis of reference 1 

Specific insight  in to  the  general 



An experimental research program w a s  undertaken t o  assess the impact 
damage by a meteoroid against  a var ie ty  of t a rge t s  simulating rad ia tor  mate- 
r ials and configurations under operating conditions of elevated temperature and 
low ambient pressure. The research w a s  d i rected toward defining s igni f icant  
damage phenomena and obtaining data r e l a t ed  t o  the  broad concepts of protecting 
rad ia tors  against  damage from impacting meteoroids. 
w a s  conducted on the  b a l l i s t i c s  range f a c i l i t i e s  of the General Motors Corpora- 
t i on  Defense Research Laboratories, Santa Barbara, California (NASA Contract 
N o .  NASw-468 ) . 

The experimental program 

The program was intended t o  explore the nature of hypervelocity impact 
damage i n  radiator  tube configurations typ ica l  of appl icat ion t o  space power 
systems such as SNAP-8. Preliminary r e s u l t s  of t h i s  study have been obtained 
with aluminum and columbium - 1-percent-zirconium tube configurations a s  
reported i n  reference 5 .  

The complete r e su l t s  of t h i s  program, including photographs of  the i m -  
pacted ta rge ts  and the complete data l i s t i n g ,  a r e  reported herein, following a 
b r i e f  review of the meteoroid hazard. 

DESCRIPTION O F  HAZARD 

The immediate concerns t o  the designer of a space rad ia tor  system are the 
l ikel ihood of co l l i s ion  with meteoroids of given properties i n  space and the  
resu l tan t  damage. Since it i s  impossible t o  control  the occurrence of mete- 
oroids i n  space, the designer must provide shielding t h a t  i s  capable of pro- 
tec t ing  a radiator  from impact damage by the l a rges t  meteoroid it is  expected 
t o  encounter fo r  a - _ z c i f i e d  survival  probabili ty,  f l i g h t  p t h ,  and exposure 
time. 
i n  terms of frequency of encounter, direct ion of influx, mass d is t r ibu t ion ,  
r e l a t i v e  velocity,  physical properties of meteoroids, vulnerable area of the 
rad ia tor ,  and mission time. Because of the large surface areas involved, meie- 
oroids of most v i t a l  i n t e r e s t  t o  rad ia tor  designers a re  the par t icu la te  matter 
i n  the  range of mass from 
t o  be of some hazard. Also of concern i s  the f ine r  material.. capable of etching 
the high emittance coating of the rad ia tor  surface.  
the  recent publications by n i p p l e  (ref.  6 )  and by Dubin and McCracken ( r e f .  7) ,  
i n  which the frequency of occurrence of meteoroids i n  space has been predicted, 
include photographic and radar measurements as wel l  as rocket and s a t e l l i t e  
measurements. From an analysis  of these data it is possible t o  assess the me- 
teoroid hazard t o  space rad ia tors  i n  terms of the meteoroid properties,  the  
vulnerable area of t yp ica l  rad ia tor  systems, the mission time, and the aniso- 
t rop ic  meteoeroid f lux  expected f o r  a given vehicle voyage ( re f .  1). 

Consequently, the meteoroid hazard t o  a s p c e  vehicle must be considered 

t o  lo-* gram, large enough and frequent enough 

The techmiques used i n  

If it i s  assumed t h a t  the frequency of occurrence of meteoroids can be 
predicted, it is  now necessary t o  define the impact damage l i k e l y  t o  be sus- 
ta ined by a given rad ia tor  design. For space power systems involving l i qu id  
metal f luids ,  the rad ia tor  may appear a s  i n  f igure 1. 
w i l l  most l i k e l y  be composed of a th in  corrosion-resist ing inner l iner  sur- 

The fluid-carrying tubes 
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rounded by a sleeve of impact-resisting armor. A t yp ica l  rad ia tor  finned-tube 
segment is shpwn i n  figure 2 .  
aluminum allow armor (0.400 in .  t h i ck )  over a Haynes S t e l l i t e  Alloy 25 (HS-25) 
tube l i n e r  (q.020 in .  th ick) .  
1/8-inch-diameter g lass  sphere (0.038 g )  impacting a t  23,000 feet per second. 
The k ine t i c  energy-of t he  impacting p e l l e t  i s  charac te r i s t ic  of meteoroid 
energies l i k e l y  t o  be encountered i n  space. Although the c ra t e r  depth of 0.3 
inch did not r e s u l t  i n  perforation of the  tube, the  intense shock produced be- 
neath the c ra t e r  caused a dimpling of the  l i n e r  and consequent constr ic t ion of 
the  f l u i d  passage of the tube. This par t icu lar  shot w a s  f i r e d  a t  room temper- 
ature. 
by a b r i t t l e  spa l l ing  around the periphery of the c r a t e r .  

The finned rad ia tor  segment is made of c a s t  

The c ra t e r  shown i n  f igure  2 w a s  caused by a 

Hence, t he  aluminum armor behaved i n  a semibr i t t l e  fashion evidenced 

A physical  descr ipt ion of the  mechanism of c ra t e r  formation i n  simple 
p l a t e  t a rge t s  under normal hypervelocity impact i s  now possible within the 
state of the a r t .  Many experimental data are avai lable ,  and empirical r e l a -  
t ions  have been established t o  describe the phenomena. Various models t ha t  
have evolved from the  combined theo re t i ca l  and experimental s tudies  by many 
researchers have been i l l u s t r a t e d  schematically i n  references 4 and 8.  

Although there  ex i s t s  no de ta i led  mathematical theory by which t o  describe 
the  phenomena of normal hypervelocity impact, re la t ions  have been established 
and ve r i f i ed  experimentally. Some of these re la t ions  w i l l  be discussed, and 
t h e i r  a b i l i t y  t o  predict  accurately the  resu l tan t  c r a t e r  dimensions w i l l  be 
noted. The most important of t he  phenomena observed i n  previous s tudies  i s  
t h a t  a l inear  r e l a t ion  e x i s t s  between the volume of the  c ra t e r  resu l t ing  from 
hypervelocity impact and the energy of the  impacting p ro jec t i l e .  The impor- 
Lance of t a rge t  res is tance t o  shear deformation a t  high-strain r a t e s  i s  seen 
bo be a control l ing parameter t o  the f i n a l  c ra t e r  volume. For example, the 
Br ine l l  hardness iiumber 'XZS fcimd (TO provide a surpr is ingly good c r i t e r i o n  f o r  
assigning a value t o  the strmy;';;, , , f '  t i , n  t a rge t .  Other s ign i f icant  s t rength 
parameter correlat ions ~ i i .  .y 'uc t,letr!::xi.r, I, however. 

Since space rad ia tors  may be operating a t  temperatures from around 500' 

Therefore, 
t o  2000° F, the e f f ec t s  of r a i s ing  the  t a rge t  temperature w i l l  be evidenced by 
an increase i n  the r e su l t an t  damage, as reported i n  reference 4. 
it is  necessary t o  t e s t  space rad ia tor  tubes under simulated operating condi- 
t i ons  i n  order that a proper appra isa l  may be made of the  damage t h a t  has been 
effected.  

EXPERlBEWI'AL PROGRAM 

The overa l l  objectives of the NASA rad ia tor  protection program are three- 
fold:  f irst ,  t o  define the pr inc ipa l  damage mechanisms involved i n  the hyper- 
ve loc i ty  impact of pa r t i c l e s  against  rad ia tor  tubes; second, t o  evaluate the 
r e l a t i v e  effectiveness of various protection methods and concepts; and th i rd ,  
t o  conduct a systematic study of t h e  s ign i f icant  parameters involved s o  t h a t  a 
la rge  body of r e a l i s t i c  design data covering a wide range of applications can 
be obtained. In  most cases the  experimental work w i l l  dea l  with r e a l i s t i c  tube 
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t a rge t s  of applicable materials and configurations a t  temperatures and i n  en- 
vironments charac te r i s t ic  of the rad ia tor  design operation. 

I n  general, two basic  protection concepts are current ly  being considered 
i n  rad ia tor  design ( ref .  1). 
approach i n  which a mass of material is used t o  surround the  f l u i d  carrying 
members. In  t h i s  case the design problem is  to allow f o r  j u s t  enough mass 
(i. e., thickness) that w i l l  prevent a predefined clanage t o  the  configuration. 
In  the  second approach, ca l led  the  bumper approach, various displaced sh ie ld  
configurations a re  u t i l i z e d  to break up the  p ro jec t i l e  i n to  smaller pa r t i c l e s  
allowing the  use of less primary armor material. Examples of rad ia tor  geome- 
tr ies embodying the armor and bumper approaches a r e  given i n  f igure  3. 
bumper concepts, fo r  e f fec t ive  evaluation, however, must a l s o  include consider- 
a t ion  of the e f f ec t s  of heat- t ransfer  impedence. 

The first,  and simplest, is the s o l i d  armor 

The 

I n  the e f f o r t  contained i n  the present program, i n i t i a l  work has been d i -  
rec ted  toward an experimental study of the armor protection approach. 
armor approach w a s  undertaken first because it was f e l t  t h a t  the large amount 
of supporting data avai lable  from f l a t  p la te  f i r i n g s  would enhance an ear ly  
generation of usable design data .  An exploratory set  of f i r i n g s  in to  armored 
tubes was therefore s e t  up t o  invest igate  tube damage phenomena (crater ing and 
knternal spa l l ing)  and t o  indicate  some of the variables involved. 
hoped t o  obtain a general grasp of r e a l  tube e f f ec t s  t o  a i d  i n  the direct ion 
and de ta i l ing  of t he  subsequent e f fo r t .  In  addition, t a rge t s  and conditions 
were prescribed fo r  this first phase that were charac te r i s t ic  of curreht radi- 
a t o r  system designs (such as SNAP-8)  so t h a t  any s igni f icant  r e su l t s  a t ta ined  
could f ind  immediate application. 

The 

It w a s  a l s o  

For armored tubes the pr inc ipa l  variables expected t o  influence damage 
are armor material and thickness, temperature, inner (corrosion r e s i s t i ng )  
l i n e r  mater ia l  and thickness, angle of impact, and in t e rna l  f l u i d  ( l iqu id-or  
gas) .  The f i rs t  phase of the program w a s  therefore se% up t o  include most of 
these variables.  Tube configurations used were s o l i d  356-T51 cas t  aluminum 
tubes on a HS-25 inner l i n e r ,  and s o l i d  columbium - 1-percent-zirconium a l l o y  
tubes. The specif ic  shots ca l led  f o r  i n  t h i s  f i rs t  phase a re  outlined i n  
t ab le  I. 
glass p ro jec t i l e s  a t  a nominally constant veloci ty .  
thicknesses f o r  the  aluminum and columbium tubes were determined according t o  
the impact re la t ions  of reference 1. 

It was intended t o  conduct these f i r i n g s  with 3/32-inch-diameter 
Equivalent protection 

EX€"IMENTAL TECHNIQUES 

Range and Monitoring Instrumentation 

AU of the t e s t s  t o  date were conducted on a b a l l i s t i c s  range, which i s  
f u l l y  described i n  reference 9. The basic equipment consis ts  of a l ight-gas 
gun, a 20-foot f r ee - f l i gh t  range, and an impact chamber. The 0.22-inch ca l iber  
accelerated-reservoir l ight-gas gun is shown i n  figure 4. With t h i s  gun it 
was  possible t o  launch cy l indr ica l  p l a s t i c  models t o  ve loc i t ies  of 32,000 f e e t  
per second or saboted metal or glass  spheres t o  ve loc i t ies  of 28,000 feet per 
second. 
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The accelerated-reservoir l ight-gas  gun cons is t s  of a combustion chamber 
i n  which a smokeless powder i s  used t o  acce lera te  a polyethylene pump pis ton 
down an 18-foot-long, 1-inch-inside-diameter pump tube. I n  so doing, the p is -  
tons compress hydrogen as  the  dr iver  gas t o  a nominal pressure of 20,000 
t o  30,000 pounds per square inch. A t  t h i s  pressure a break valve opens a t  the  
f ron t  end of the high-pressure coupling and thus releases  the hydrogen gas i n t o  
the launch tube behind the model. As  the model begins t o  t r a v e l  i n  the 4-fOOt- 
long launch tube, the pump p is ton  en ters  the tapered sect ion of the high- 
pressure coupling. 
a constant base pressure i s  maintained behind the  model during launch. The 
p ro jec t i l e  i s  launched i n t o  the f l i g h t  range and t r ave l s  20 f e e t  before i m -  
pacting the t a rge t .  Pr ior  t o  impact, the p ro jec t i l e  t rave ls  through a surge 
chamber ( i n  which the model i s  separated from the sabot)  and then in to  the 
veloci ty  chamber. 
recorded a t  each of th ree  spark shadowgraph s t a t ions  ( the  octagonal chamber 
shown i n  f i g .  5 ) .  When the  model in te r rupts  a photo beam, electronic  counters 
a r e  s ta r ted ,  a shor t  duration spark is  s e t  off  a t  each s t a t ion ,  and a f i lm 
p la t e  i s  exposed. The measurements of time and distance between s t a t ions  serve 
t o  determine the ve loc i ty  of the p ro jec t i l e  along i t s  t r a j ec to ry  and, i n  p a r t i -  
cular ,  a t  the t a rge t .  The accuracy of the impact veloci ty  determined i n  t h i s  
manner i s  b e t t e r  than +-1 percent.  

The f ron t  face  of the pump pis ton is accelerated and thus 

Here the posi t ion and time of f l i g h t  of the p ro jec t i l e  a r e  

The f l i g h t  of the model is  terminated i n  a spec ia l ly  constructed impact 
chamber ( f i g .  5 )  that has s i x  viewing por t s .  Two l a rge  windows a re  located on 
opposite s ides  of the t a rge t  area,  and four smaller windows a re  located on the 
f ron t  of the  chamber. A f u l l - s i z e  door a c t s  as the  r ea r  wal l  of the chamber 
t o  allow easy inser t ion  and removal of the  t a rge t s .  The ta rge ts  a r e  held by a 
mount t h a t  is supported by two r a i l s  on the f loor  of the chamber. This design 
allows placement of the t a rge t  a t  a uniform longi tudinal  posit ion with respect  
t o  the viewing ports .  A va r i e ty  of t a rge t s  can be accommodated. 

Since the invest igat ion of the damage t o  a rad ia tor  t a rge t  requires t h a t  
the t a rge t s  be impacted while under a simulated space environment, it w a s  
necessary t o  conduct the t e s t s  with the t a rge t  a t  an elevated temperature while 
i n  a simulated space environment of low ambient pressure.  
holder with the heater  elements is  shown i n  f igure 6. 
m i t s  mounting the  rad ia tor  segments and heating them t o  temperatures up t o  
1000° F. 
pact and veloci ty  chambers and by pumping down t o  pressures of l e s s  than 
l m i l l i m e t e r  of mercury. A i r ,  or any number of desired gas mixtures, can be 
introduced i n t o  the chambers as  a t e s t  medium. 
of the heated t a rge t s  i n  these t e s t s ,  helium was used a s  the t e s t  gas.  A 
vacuum gage, ca l ibra ted  fo r  helium gas, provided accurate pressure measurements 
within the chambers. 

A t yp ica l  t a rge t  
This t a rge t  holder per- 

The requirement f o r  low ambient pressures was met by seal ing the i m -  

I n  order t o  prevent oxidation 

Photographic equipment w a s  used t o  monitor the impact phenomena. 
capable of flraming r a t e s  a s  high as 1 .4  mil l ion frames per second w a s  used t o  
record precisely the incoming p ro jec t i l e  veloci ty ,  the phenomena of impact 
f lash,  and the motion, veloci ty ,  and, i n  a rough sense, the quant i ty  of minute 
p a r t i c l e s  being ejected from the c r a t e r .  
t o  observe, i n  a plane across the surface of the t a rge t ,  the growth of the 
c r a t e r  i n  time. 

A camera 

With t h i s  camera it was a l s o  possible 

A typ ica l  f i l m  sequence of a 1/8-inch g lass  sphere impacting 
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t h e  space rad ia tor  segment of figure 2 a t  23,000 feet per second is shown i n  
f igure  7.  

The b a l l i s t i c s  range is  a l s o  equipped with four  channels of f l a s h  radio- 
graphic equipment capable of viewing the  impact a t  any fou r  preselected t i m e s  
during the  c ra t e r  formation ( f i g .  5) .  Each X-ray pulse i s  0.07 microsecond i n  
duration a t  a peak output of 100 k i lovol t s  a t  1400 amperes. Flash X-ray in-  
strumentation i s  pa r t i cu la r ly  useful  t o  "see" through the e jec ta  debris from 
the  c ra t e r  t o  determine the composition of the debris,  that is, vapor or s o l i d  
pa r t i c l e s .  
de ta i led  p i c t o r i a l  record of the  process of c r a t e r  formation. 

The combination of X-ray and camera op t i ca l  records provides a 

Target Preparation 

?"ne assessment of t a rge t  damage t o  the space rad ia tor  i s  complex and r e -  
quires precise def in i t ion .  Pr ior  t o  t e s t ing  any of the ta rge ts ,  each t a rge t  
w a s  c l a s s i f i ed  according t o  mater ia l  properties (as indicated by the manufac- 
t u r e r ' s  specif icat ion)  and condition of the  mater ia l  (as indicated by v i sua l  
examination). 
di t ions,  each t a rge t  w a s  annealed f o r  8 hours a t  the t es t  temperature before 
the  shot w a s  fired. I n  the  tests conducted thus far, the  annealing and t e s t  
temperatures were 700° F. This pretreatment procedure w a s  s ign i f icant  i n  t h a t  
t he  aluminum targe ts  underwent a phase change a t  700' F after several  hours of 
annealing, which resu l ted  i n  reducing the  Br ine l l  hardness number from a nomi- 
nal  52 t o  a value of 36. The Br ine l l  hardness number i s  used here as a measure 
of the s t rength of the material; hence, the lower the number, the more damage 
expected on impact ( ref .  4) .  Following the  shot,  the  ta rge ts  were cooled t o  
room temperature and the  damage assessed. 

Since the t e s t s  were intended t o  simulate ac tua l  operating con- 

A complete tabulat ion of the r e s u l t s  and identifying parameters f o r  a l l  
data shots f i r e d  i n  conjunction with t h i s  phase of the program is  given i n  
tab le  11. Crater depth and dimple height were defined with respect t o  the  
or ig ina l  surfaces as shown i n  f igure  8 .  

I n  addition t o  measurements of  c r a t e r  depth and diameter, t a rge t s  were 
sectioned t o  show the extent  and nature of the damage. To assist i n  reporting 
the observed damage, a damage evaluation code w a s  established a s  shown i n  f i g -  
ure  9. The f i r i n g s  reported i n  table I1 include most of the specif ic  shots 
ca l led  f o r  i n  tab le  I and addi t ional  exploratory or development shots i n to  the 
subject ta rge ts  t h a t  supplied useful  information. In  many cases it w a s  not 
possible t o  achieve the exact conditions specified.  The ve loc i t ies  achieved 
were i n  the range from 23,000 t o  26,000 f e e t  per second. 
had a nominal density of 2 . 7  grams per cubic centimeter. 

The pro jec t i les  used 

The analysis of the  experiments w i l l  be described under two major headings. 
The f i rs t ,  Qual i ta t ive  Analysis, W i l l  include qua l i ta t ive  observations and com- 
parisons.  Quant i ta t ive assessment of c r a t e r  depth and onset of spal l ing w i l l  
be made i n  the sect ion Quantitative Analysis. 
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Qual i ta t ive  Analysis 

Mass scaline;. - Meteoroid mass scal ing e f f ec t s  are considered by comparing 
the damage caused by the  impact of two pro jec t i les ,  one a 3/32-inch glass  
sphere and the second a 1/8-inch g lass  sphere. 
aluminum-armored HS-25 tube a t  a veloci ty  around 23,250 f e e t  per second ( f i g .  
LO). The t a rge t s  were a t  an average environmental operating temperature of 
715' F. 
i n t o  the  meteoroid mass-frequency d is t r ibu t ion  area of i n t e r e s t  fo r  radiators  
(ref.  1). 

Each sphere impacted an 

These pro jec t i les ,  weighing 0.0163 and 0.0413 gram, respectively,  f a l l  

A s  shown i n  f igure  10, the 3/32-inch glass  sphere d id  not perforate the 
armor but did cause a dimpling of the  inner l i n e r .  
on the  other hand, produced a l a rge r  c ra t e r  diameter and complete perforation 
of t he  aluminum armor and the HS-25 l iner .  Hence, under these conditions of 
t a rge t  temperature and p ro jec t i l e  density, the "ba l l i s t i c  l i m i t "  of t h i s  con- 
f igura t ion  can be defined as being between a meteoroid k ine t ic  energy of 302 
t o  762 foot-pounds. 

The 1/8-inch glass  sphere, 

T q g e t  temperature. - Although it w a s  shown i n  reference 4 tha t  by in-  
creasing the  t a rge t  temperature one could achieve greater  damage t o  a simple 
metal p la te  ta rge t ,  it w a s  not known how the increased temperature would a f f e c t  
a composite tube t a rge t  such as those selected f o r  these t e s t s .  In  one t e s t ,  
a 1/8-inch g lass  sphere w a s  f i r e d  a t  an average veloci ty  of 23,300 f e e t  per 
second in to  each of two ta rge ts ,  one a t  room temperature and the  other a t  
700' F ( f i g .  11). 
case of the t a rge t  a t  700' F, however, the  c ra t e r  area w a s  greater  than fo r  the  
t a rge t  a t  room temperature. I n  addition, the t a rge t  a t  room temperature ex- 
h ib i t ed  evidence of b r i t t l e  spa l l ing  around the  periphery of t he  c ra te r ,  which 
i s  indicat ive of the grea te r  hardness o r  lower d u c t i l i t y  of the material .  

In  both cases the rad ia tor  complex w a s  perforated. I n  the  

Aluminum ta rge t s  impacted by a 3/32-inch glass  sphere a t  400' and 700' F 
a re  shown i n  f igure  12(a) .  
crease i n  both c ra t e r  depth and diameter, but it did not a f f e c t  the height of 
the dimple i n  the l i n e r .  Sections of these ta rge ts  taken a t  the center of  the 
c ra t e r  and a saw-cut away a r e  shown i n  f igure  12(b);  the armor mater ia l  did 
not follow in to  the void created by the dimpled l i n e r  away from the point of 
maximum c ra t e r  depth. 

The increase i n  temperature resul ted i n  an in- 

Impact angle. - The next var iable  known t o  a f f e c t  ser iously the damage 
sustained by a t a rge t  under hypervelocity impact i s  t h a t  of the impact angle of 
t he  p ro jec t i l e  t o  the surface of the t a rge t .  Figure 13 shows the r e s u l t s  of a 
3/32-inch g lass  sphere impacting aluminum armor t a rge t s  a t  27' and 70' from 
the normal a t  around 25,000 feet  per second a t  room temperature (photographs 
were taken normal t o  the  r e su l t an t  c r a t e r ) .  
aluminum armor t a rge t s  a t  700° F are shmn i n  figure 14. Several important r e -  
s u l t s  should be pointed out .  
thus assuring t h a t  the impacts were typ ica l  of the  hypervelocity impact regime. 
This observation is  e s sen t i a l ly  confirmed by the  sect ion photograph of fig- 
ure 15 (sect ions taken a t  maximum c r a t e r  depth and a saw-cut away). 
penetration depths and the resu l t ing  c r a t e r  volumes decrease as the impmt 
angle increases.  According t o  previous investigations w i t h  p l a t e  ta rge ts  

Oblique impacts a t  two angles fo r  

F i r s t ,  a l l  the c ra t e r s  appear hemispherical, 

Second, 
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(refs. 4 and lo), these e f f ec t s  can be accounted f o r  empirically by measuring 
the  energy of the at tacking p ro jec t i l e  i n  terms of i t s  normal component of 
veloci ty .  Hence, as the  angle of obl iqui ty  i s  increased, the  energy of the  
p ro jec t i l e  and the corresponding penetration depth should diminish with the  
square of the cosine of the angle of impact. 

The phenomena of reduced penetration with angle of obl iqui ty  w a s  a l s o  ob- 
served f o r  the  columbium - 1-percent-zirconium tube t a rge t s  ( f i g .  1 6 ) .  
s u l t s  of figure 16 add f'urther ve r i f i ca t ion  t o  the observation that, providing 
the  normal component of ve loc i ty  of the p ro jec t i l e  exceeds tha t  required f o r  
hy-pervelocity cratering, the  resu l tan t  c r a t e r  w i l l  be a hemisphere, although 
much reduced i n  volume. 

The re- 

In te rna l  damage. - It was indicated e a r l i e r  t ha t  radiator tube design 
should a l so  be concerned with the poss ib i l i t y  of i n t e rna l  damage e f f ec t s  such 
as spal l ing and dimpling even i n  the absence of a perforation of the tube w a l l .  
The existence of such e f f ec t s  i n  columbium and aluminum tubes w a s  ve r i f i ed  as 
indicated i n  f igure 1 7 .  Deleterious e f f ec t s  resu l t ing  from the  in jec t ion  of 
spal led fragments i n to  the flow, from the constr ic t ion of the f l u i d  flow, or 
from the generation of a pressure pulse i n  a flowing l i qu id  w i l l  have t o  be 
considered. It is not suf f ic ien t ,  therefore,  merely t o  observe the  c ra t e r  and 
measure depth of penetration i n  assessing t a rge t  impact damage f o r  appl icat ion 
t o  rad ia tor  tube configurations. 

Inner l i n e r .  - The benef ic ia l  e f f ec t s  provided by an inner l i ne r  can be 
seen i n  f igure  18. In  t h i s  figure one t a rge t  was l ined  with a 0.020-inch- 
th ick  HS-25 l iner ,  while the second t a rge t  had no l i ne r ;  the aluminum armor 
w a s  made thicker,  and thus the weight w a s  kept constant. The inner HS-25 
l i n e r ,  although dimpled on the  inside,  prevented netal spal l ing i n t o  the tube. 
A sect ion photograph of the t a rge t  with no l i n e r ,  t a rge t  38, i s  shown i n  f i g -  
ure  1 9 .  
spal l ing w a s  s t i l l  prevented by the l i n e r  as shown by the  t a rge t  on the  r i g h t  
i n  f igure 17, although the  dimpling w a s  severe. It can be concluded, there- 
fore,  t h a t  a tough inner l i n e r  is  of great  importance i n  preventing spalls from 
being ejected in to  the  coolant-carrying f l u i d .  

Even when the p ro jec t i l e  s i ze  w a s  increased t o  a 1/8-inch sphere, 

A typ ica l  impact c r a t e r  sect ion of an aluminum ta rge t  with an HS-25 l i n e r  
i s  shown i n  f igure  20. Here the spal l ing of the armor mater ia l  beneath the 
c ra t e r  i t s e l f  can be c l ea r ly  seen, i n  addition to" the  dimpled HS-25 l i n e r  and 
the  delaminating that has occurred between the l i n e r  and the armor. 
i n  which the HS-25 l i n e r  r e s t r i c t s  the f laking and breaking away of the 
spalled pa r t i c l e s  i s  c l ea r ly  depicted. O f  a much-more subt le  nature i s  the 
delaminating t h a t  has occurred a t  a distance far removed from the dimpled 
sect ion i t s e l f .  
f igure 21 .  Here a t  magnifications of  1 2 0  and 300, respectively,  the  c ra t e r  
sect ion a t  points A and B can be seen i n  d e t a i l .  
t i n g  has occurred because the  HS-25 l i n e r  w a s  pulled away from the armor and 
the bonding material  failed. Section B shows another in te res t ing  observation. 
Here it i s  believed t h a t  some delamination i s  not associated with the forma- 
t i o n  of the  c ra te r ,  but rather a failure of the  bond during the heating of the  
rad ia tor  section pr ior  t o  impact. The la rger  coef f ic ien t  of expansion i n  
aluminum, compared with HS-25, no doubt resul ted i n  a failure of the bond 

The manner 

A closeup view of points A and B i n  f igure  20 can be seen i n  

A t  point A severe delamina- 
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during the  heating process. 
reducing sect ion s t rength and heat- t ransfer  properties.  

Delamination can a f f e c t  rad ia tor  performance by 

Tube e f f ec t .  - Ln applications of crater ing data t o  rad ia tor  tube design, 
it has been assumed tha t  the depth of penetration i n  f l a t  p la te  ta rge ts  is  
representative of t he  penetration in to  tube w a l l s  of i den t i ca l  thickness. This 
w a s  not found t o  be the case, however, f o r  a s igni f icant  e f f ec t  of tube s i ze  on 
impact damage w a s  observed. Figure 22 shows impact i n to  a columbium - 
1-percent-zirconium f l a t  p l a t e  (radius = w) ana i n t o  a 0.46-inch inside- 
diameter columbium - 1-percent-zirconium tube of the  same w a l l  thickness under 
iden t i ca l  tes t  conditions. Complete suppression of spal l ing was  found i n  the 
case of the  tube, although the depths of penetration were essent ia l ly  the s a m e .  
A s i m i l a r  r e s u l t  w a s  obtained for an unlined aluminum tube, as shown i n  f i g -  
ure  23 .  The r e s u l t s  show the tubular section not perforated, ye t  the f l a t  
p la te  w a s  completely perforated. A more dramatic example of the  tube radius 
e f f ec t  with the c a s t  aluminum is  shown i n  f igure  24. The section photographs 
show the r e s u l t s  of impact i n to  tubes of 2.5- and 0.125-inch inner diameters 
under iden t i ca l  conditions and w a l l  thicknesses. Additional photographs of 
these t w o  t a rge ts  a r e  shown i n  f igures  25 t o  27 .  

The a b i l i t y  of the tubular t a rge t  shape t o  sus ta in  l e s s  impact damage i s  
believed t o  stem from the combined e f f ec t s  of s i ze  and inner and outer curva- 
ture. If t h i s  observed tube s i z e  e f f ec t  i s  ver i f ied  by fur ther  data, it would 
indicate  a considerable advantage i n  using small-diameter tubes. The use of 
such tubes r e su l t s  i n  a smaller required protection thickness and a smaller 
perimeter, both of which combine t o  produce a reduced weight. 

Protection -~~ c r i t e r ion .  - The f i n a l  qua l i ta t ive  comparison t o  be drawn from 
the experiments conducted i s  the  e f f ec t  of damage protection c r i t e r ion .  Fig- 
ure 28 shows an impacted colwbium tube and a tube of aluminum armor and HS-25 
l i n e r  designed f o r  approximately equal weight of protect ive thickness. The 
poorer performance of the columbium a l loy  on t h i s  basis  i s  indicated.  Fig- 
ure 29 shows the r e s u l t s  of impact i n to  columbium and aluminum-lined tubes de- 
signed f o r  equal protection i n  which the tube w a l l  thicknesses were adjusted 
t o  1 .5  P, 
t ha t ,  i n  designing a tube t o  prevent perforation, 1.5 P, i s  not necessarily a 
correct  value t o  use. Later s tudies  indicates  1 .78  P, i s  necessary t o  pre- 
vent perforation i n  2024-T3 aluminum f l a t  p la tes  (ref.  ll).) 
subsequent sect ion e n t i t l e d  " Ik t e r i a l s  constant," the r e su l t s  of impacts indi-  
ca t e  t h a t  penetration i n  the columbium ta rge ts  w a s  subs tan t ia l ly  l e s s  than ex- 
pected from analysis .  

according t o  the r e l a t ion  of reference 1. (It should be noted 

As  shown i n  the 

Quant i ta t ive Analysis 

The preceding sect ion presented a discussion of some of the pr incipal  
qua l i ta t ive  observations obtained from the r e s u l t s  of the i n i t i a l  f i r i n g s .  In  
addi t ion t o  exploring and defining the  phenomenological aspects of impact i n to  
rad ia tor  tube configurations such as the  damage mechanisms and pr inc ipa l  var i -  
ables involved, the program a l so  has as i t s  ult imate objective the generation 
of accurate ana ly t i ca l  r e l a t ions  for use i n  design. Although the i n i t i a l  phase 
of the  program w a s  not spec i f i ca l ly  designed as a systematic parametric study, 
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it was possible t o  obtain some preliminary quant i ta t ive information from the 
f i r i n g s  . 

It w a s  pointed out earlier t h a t  a de ta i led  mathematical formulation by 
which t o  predict  accurately the damage done by a meteoroid t o  space rad ia tor  
configurations does not e x i s t .  The theo re t i ca l  approaches of Bjork, Riney, 
Chou, and others1 have made s igni f icant  advances i n  the ana ly t ica l  approach. 
The treatments, however, do not account i n  d e t a i l  f o r  the  e f fec ts  of increased 
t a rge t  temperature, var ia t ions i n  t a rge t  and p ro jec t i l e  material, impacts a t  
angles of obliquity,  and the spall ing,  dimpling, or delaminating of t h i n  and 
composite ta rge ts .  A number of empirical re la t ions  have been offered i n  the 
l i t e r a t u r e  (refs. 1, 4, and 12  t h a t  do permit a t  least an approximation of the 
depth of penetration that might occur under l imited conditions. These rela- 
t ions  a re  of the  form (ref .  4)  

Pa = K($ cos2 (cgs u n i t s )  

where K = 1.82X10-3 cm/erg1l3 , or (refs. 1 and 13) 

dP 

(All symbols are defined i n  the appendix. ) These 
tained from impact i n to  thick f l a t -p l a t e  targets ,  
extent they w i l l  be va l id  f o r  tubular t a rge t s .  

re la t ions  , however, were ob- 
and it is not known t o  what 

Some preliminary correlat ions pertaining t o  several  fac tors  involved i n  
the  previous re la t ions  f o r  depth of penetration have been established from the  
i n i t i a l  l imited f i r i n g s .  These relate t o  the e f f ec t s  of t a rge t  temperature, 
angle of impact, t a rge t  material, tube s ize ,  and l i n e r  thickness. In  these 
p lo ts  the  values of depth of penetration are the values corrected t o  a common 
veloci ty  of 25,000 f e e t  per second according t o  the two-thirds power of the 
veloci ty  (designated by P") . I n  addition, only penetration values f o r  P/ta 
l e s s  than 0.75 were included i n  order t o  eliminate "thin-target" e f f ec t s .  
data point i s  ident i f ied  by i t s  corresponding t a rge t  number. 

Each 

Angle of impact. - The avai lable  data on var ia t ion  of depth of penetration 
with angle of impact a r e  shown i n  f igure  30 f o r  cas t  aluminum tubes a t  two 

temperatures. The b e s t - f i t  var ia t ions fo r  the (cos r e l a t ion  of equa- 
t ions  (1) and ( 2 )  a r e  a l s o  shown i n  the figure. On the basis  of these ana ly t i -  
c a l  re la t ions  it w a s  possible t o  normalize the data with respect t o  penetration 
in to  an i n f i n i t e  t a rge t  a t  25,000 f e e t  per second (P",, a t  normal impact 

lFor addi t ional  papers on hypervelocity impact phenomena see : Proceedings 
of  the Third Symposium on Hypervelocity Impact, Armor Research Foundation, 
October 1958, the Fourth Symposium on Hypervelocity Impact held a t  Eglin Air 
Force Base ,  Florida, Apri l  1960, and the  F i f t h  Symposium on Hypervelocity Im- 
pact held a t  the Colorado School of Mines, Denver, Colorado, October 1961. 
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( A  = 0) ,  a s  shown i n  figure 31. 
sented by the (cos A)2/3 r e la t ion ,  which ve r i f i e s  the significance of the nor- 
m a l  component of veloc i ty  i n  determining penetration depth for the aluminum 
tubes.  

It is  thus seen t h a t  the data are w e l l  repre- 

Tar-get temperature. - The avai lable  information on var ia t ion of depth of 
penetration with temperature f o r  normal impact f o r  i den t i ca l  conditions is  
shown for cas t  aluminum ta rge t s  i n  f igure  3 2 .  The value of P* f o r  normal 
impact w a s  obtained by correcting f o r  angle of impact according t o  the  
(cos A)2/3 
depth of penetration should vary as ( l / B t ) l I 3 ,  and according t o  equation ( 2 )  
the  var ia t ion  should follow (l/Yt)1/3. The best  f i t  of the experimental data 
for the  functional var ia t ion  based on modulus of  e l a s t i c i t y  and Br ine l l  hard- 
ness i s  shown i n  f igure  31. Values of modulus w e r e  obtained from an unpub- 
l i shed  NASA compilation of mechanical properties of mater ia ls .  
a t i on  is  seen t o  be reasonably described by the  ana ly t i ca l  r e l a t ions .  

r e l a t ion  as indicated i n  f igure  31. According t o  equation (1) the  

The data var i -  

Tube s i ze .  - Examination of the  data indicated the existence of a tube 
s i z e  e f f ec t  on depth of penetration. This e f f ec t  i s  shown i n  f igure 33 where 
the  depth of penetration f o r  normal impact against  r a t i o  of tube w a l l  thickness 
t o  outer radius i s  p lo t ted  f o r  aluminum and columbium tubes a t  700' F. 
lower l imit ing value of corresponds t o  a f l a t  p la te ,  while 
ta /Ro = 1 represents the upper l i m i t  o f  a s o l i d  cylinder.  
t h a t  the  region of f a l l  o f f  i n  penetration depth a t  high values of 
corresponds t o  p rac t i ca l  values of tube inner diameter (0.50 in .  and l e s s ) .  
Although no inner surface damage w a s  observed f o r  these high ta/Ro points, it 
i s  not known whether a quant i ta t ive ly  comparable decrease i n  required thickness 
w i l l  be observed f o r  the avoidance of inc ip ien t  spal l ing or dimpling. It i s  
c l ea r  from the photographs of f igures  22 t o  28, however, that a subs tan t ia l  de- 
crease i n  spal l ing and dimpling can be expected for reduced tube s i z e .  

The 
ta/Ro = 0 

It should be noted 
ta/Ro 

The extension of the f a i r ed  curves through the data points t o  ta/Ro = 0 
permits the  normalizing of the data with respect t o  f l a t - p l a t e  penetration (P* 
a t  
seen t o  f a l l  on e s sen t i a l ly  the same curve, which indicates a possible uniform 
e f fec t  f o r  both mater ia ls .  The establishment of a general empirical correction 
r e l a t ion  f o r  tube s i ze  on these l imited data, however, i s  considered premature. 

ta/Ro = 0 )  as shown i n  figure 34. The aluminum and columbium tubes are 

Although a good preliminary correlat ion has been obtained on the  basis  of 
the  r a t i o  of w a l l  thickness t o  outer radius, t h i s  may not be the most s ign i f i -  
cant physical  parameter. It can be reasoned that the s i z e  of the tube, the 
s i z e  of the  impacting pa r t i c l e ,  and the  r a t i o  of p a r t i c l e  diameter t o  outer 
radius may a l s o  be involved. 

-~ Tube. l i n e r  thickness. - The e f f ec t s  of var ia t ion  of tube l i n e r  thickness 
on depth of penetration and inner surface dimple height a r e  shown i n  f igure  35 
for aluminum armor - HS-25 l i n e r  combinations of constant t o t a l  weight. 
thickness decreases with increasing l i n e r  thickness. ) Depth of penetration is 
seen t o  increase with increasing l i n e r  thickness.  The reason f o r  t h i s  is not 
c l ea r .  Since the  th ick  l i n e r  shots represent values of P/ta greater  than 

(Armor 
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0.75, the increased penetration may be a "thin-target" e f fec t ,  o r  the e f f e c t  
may be due t o  the in te rac t ion  of the  l i n e r  on the  shock var ia t ions i n  the 
armor. It is  a l s o  observed that depths of penetration greater  than the  armor 
thickness can be obtained because of the  dimpling of the  l i n e r .  

Dimpling of the  l i n e r  is  seen t o  increase as l i ne r  thickness decreases, 
and fo r  some small value of l i n e r  thickness the dimple bursts  and spa l l ing  
occurs. 
i s  su f f i c i en t ly  th ick  t o  prevent rupture, it appears that there  i s  a s izable  
var ia t ion i n  l i n e r  thickness t h a t  can be used a t  f ixed t o t a l  weight without 
r i s k  of puncture, a t  least fo r  the l i m i t s  covered i n  the t e s t s .  

(The unlined tube showed considerable spa l l ing . )  A s  long as the l i n e r  

Materials constant. - The estimation of depth of penetration using the  
form of  equation ( 2 )  involves a mater ia l  constant t h a t  has been reported t o  
vary from around 1.5 t o  2 .5  ( ref .  13). 
i n  reference 1 2 ,  y The data obtained i n  the  i n i t i a l  phase of the  
program can a l so  be u t i l i z e d  t o  obtain an indication of the appl icabi l i ty  of 
these constants. For a tube, equation ( 2 )  can be wri t ten 

I n  reference 1, y is taken as 2 .O, and 
is  2.28. 

where P/dp i s  based on the  measured depth of penetration i n  the tube ta rge t ,  
P/Pm 
values i n  the denominator a re  computed from mater ia l  properties and t e s t  condi- 
t ions  ( r e f .  1, cp = 1/2; r e f .  12, cp = 2/31. 

i s  the  correction f o r  tube s i ze  established i n  f igure  31, and the other 

Values of y were computed fo r  the  applicable data points as indicated i n  
t ab le  111 f o r  aluminum and columbium - 1-percent-zirconium t a rge t s .  
16  cas t  aluminum targe ts ,  the average value of y was 2.27,  i n  close agreement 
with the constant of reference 1 2 .  The density of aluminum and t h a t  of glass  
were assumed equal, negating the  influence of the difference i n  cp i n  r e fe r -  
ences 1 and 1 2 .  For the columbium - 1-percent-zirconium targets ,  however, the 
calculated average values were subs tan t ia l ly  lower than the equation values f o r  
both references. 
y 
difference between the values f o r  the  cas t  aluminum and the columbium - 
1-percent-zirconium a l loy  ta rge ts  suggests that  the constant y cannot be 
taken as a s ingle  value f o r  a var ie ty  of t a rge t  mater ia ls .  
data points a r e  avai lable  for  the columbium ta rge ts ,  however, and since these 
t a rge t s  were heated i n  a i r  f o r  8 hours a t  700' F pr io r  t o  impact and therefore 
became oxidized, fur ther  f i r i ngs  in to  columbium w i l l  be necessary t.0 es tab l i sh  
firmly the existence of the  differences i n  y. 

For the  

For the equation of reference 1 (9 = 1/2) ,  the  calculated 
i s  1.49; while f o r  the equation of reference 1 2  ( c p  = 2/3) ,  y is 1 .79 .  The 

Since only four 

The foregoing r e su l t s ,  i f  substantiated,  indicate a r e l a t ive ly  smaller 
This does not depth of penetration i n  columbium than previously estimated. 

necessar i ly  mean, however, that the armor thickness (and consequently the 
weight) required t o  avoid c r i t i c a l  damage (spa l l ing  o r  dimpling) w i l l  l ikewise 
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be less. Further tests w i l l  be required t o  es tab l i sh  whether such is  indeed 
the case.  

SUMMARY OF RESULTS 

An exploratory experimental investigation of hypervelocity impact by glass  
spheres a t  around 25,000 feet  per second in to  columbium - 1-percent-zirconium 
a l loy  rad ia tor  tube t a rge t s  and cas t  aluminum targe ts  with and without HS-25 
inner l i n e r s  w a s  conducted t o  explore e f fec ts  of t a rge t  temperature, angle of 
impact, l i n e r  thickness, tube s ize ,  and t a rge t  mater ia l .  The major findings 
of the  investigation a r e  as follows: 

(I) Hypervelocity impact can create  spal l ing and dimpling of the tube 
inner surface i n  thicknesses subs tan t ia l ly  greater  than that required t o  pre- 
vent perforation. Spalling and dimpling should therefore be important con- 
s iderat ions i n  tube armor design. 

( 2 )  Signif icant  differences between impact i n to  tubes and plates  were ob- 
served. In  general, decreasing the tube s i ze  below an outside diameter of  

about 1~ inch tended t o  reduce depth of penetration and spal l ing.  

tage is  indicated i n  using small diameter tubes. 

1 An advan- 

(3)  The presence of a th in  HS-25 l i ne r  on the inside of the  cas t  aluminum 
armor tended t o  suppress spa l l ing  and permit a greater  depth of penetration 
without puncture. Considerable dimpling can occur, however. 

( 4 )  Variation of depth of penetration appeared t o  cor re la te  wel l  with the 
normal component of the  impact veloci ty .  

( 5  ) Increasing depth of penetration with increasing t a rge t  temperature up 
t o  700' F appeared t o  cor re la te  wel l  with the var ia t ion  of the modulus of  e las -  
t i c i t y  or the Br ine l l  hardness i n  the  t a rge t .  

( 6 )  The depth of penetration i n  aluminum w a s  i n  e s sen t i a l  agreement with 
the  predictions of two commonly used empirical r e l a t ions .  The depth of pene- 
t r a t i o n  i n  columbium - 1-percent-zirconium, however, appeared t o  be substan- 
t i a l l y  lower than predicted by these r e l a t ions .  

Lewis Research Center 
National Aeronautics and Space Administration 

Cleveland, Ohio, May 25, 1964 
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B t  

C t  

dP 

E 

K 

P 

p, 

P* 

RO 

T 

cp 

A 

Brine l l  hardness number of t a rge t  

veloci ty  of sound i n  ta rge t ,  )/Yt@;/pt 

diameter of p ro j ec t i l e  

k ine t ic  energy of projec t i le ,  ergs 

accelerat ion of gravi ty  

dimple height 

constant, 1.8ZX10-3 ~ m / e r g l / ~ ,  eq. (1) 

depth of penetration i n  tube t a rge t  

depth of penetration i n  th ick  t a rge t  

depth of penetration i n  tube t a rge t  corrected t o  25,000 f t / s ec  

tube outside radius 

temperature 

armor thickness 

l i n e r  thickness 

projec-t;ile ve loc i ty  

t a rge t  modulus of e l a s t i c i t y  

materials constant i n  penetration equation 

exponent for density r a t i o  i n  penetration equation 

angle of impact (measured from normal) 

p ro jec t i l e  density 

t a rge t  density 
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TABU I. - F I R I N G  SCHEDUL;E 

[356-T51 cast aluminum; columbium - 1 percent zirconium.] 

Impact angle - 
tube axis 
displaced 

I Test variables I Test conditions 

Oo, 30°, 60' , and 75' to 80' at 
room temperature and 700' F 

1 Temperature IRoom temperature, 400°, 600°, 700°, and 750' F 

Liner thick- 10, 0.020 , 0.035, and 0.044 inch at 700' F 
~ ness 

Tube diameter 0.125, 0.46, "1.0, "2.5 inch, and 00 

at 700' F 

Material prop- Aluminum against equivalent mass of columbium 
erties Aluminum against equivalent protection 

of columbium \ 

at 700' F 
0.125- .and 0.460-inch tube inside diameter 

Target 

0.446-inch-thick aluminum 
.32,O-inch-thick columbium 

0.446-inch-thick aluminum 
,202-inch-thick columbium 

.320-inch-thick columbium 

aAluminum only. 



~~~~~ ~ ~ ~ 

Target Liner Liner Liner Armor Armor Armor Target Target Pro:ec- Projec- Projec- Impact Cr3ter di- Crater Inside Dimple Ratio Young's Damage Crater 

e t e r  , tL, e t e r  , t,, 0 a t  i n .  g f t / s e c  deg in. below in .  depth rected 

mate- inside thicx- mate- :ns;de thick- temper- hard- t i l e  d:- t i l e  t i l e  ve- angle, ameter, depth, ,  d i m -  height, of modulus, code depth 
r i a l  diam- ness, r i a l  diam- ness, ature,  ness ameter, mass, l cc i ty ,  h,  i n .  P, e t e r  h, c ra te r  Yt ,  cor- 

room Mini- Maxi- dimple, t o  psi t o  
temper- mum mum in .  armor 22,000 in .  i n .  i n .  i n .  

1 HS-25 0.460 0.020 A1 0.500 0.400 400 56 
3 700 2 1  
5 732 37 
6 
1 
9 
10 
12 

R.T. . 3  
700 37 .. 

.i c 

53 HS-25 0.460 0.020 A 1  0.500 0.400 R.T. t' 
54 .460 .020 ,400 R.T. 
62 ,402 .049 1 ,343 700 
64 .460 ,020 .4OQ 700 

.020 , I 700 66 .460 ~~ 

69 ,460 
71 .430 
75 .403 
79 I ---- 

t 400 
,371 700 

3/32 0.0160 25,500 
3/32 .0161 25,300 
3/32 ,0161 23,790 
l/- .0413 24,050 
3/32 ,0160 24,600 
5/32 .0160 24,300 
1/2 ,0412 23,500 

.0413 22,700 :$:: .0160 24,350 
?/d ,0414 24,000 
3/52 ,0160 23,950 
3/32 .0160 25,300 _-___ 
3/32 0.0160 26.150 

24;650 
24,950 

1 i 

thick- 
ness, 
P / t a  

ft/sec, 
P' , 
in .  

5 0.45 0.52 0.299 0.34 0.12 0.747 Y.4X10b -- 0.295 
66 .35 .42 .168 .46 1 .... .420 6.8 _. ,167 

6 .50 .56 .306 .37 ..09 .765 6.6 _ _  .316 
10.9 l e  Perforated _ _  .128 

Perforated ---- 16 .52 .54 ---- 
fi8 .31 . 3 6  .127 .46 I .. .. ,318 6 . 8  
15 .SO .;8 .315 .34 .12 .787 l b  .320 
41 .63 .73 ,476 .23 I .23 1.19 .496 
0 .64 .78 __- -  Perforated ---- 1 q i  Perforated 
0 .42 .47 .544 .26 .20 1.36 10.3 I C  .544 
10 .53 .50 .315 .33 .13 .786 IC .323 

.331 
,279 

33 .39 .45 ,322 .37 .09 .920 
32 .4l .47 ,281  .34 1 .12 .937 
~ _ _ _ _ _  I 

40 0.28 0.38 0.150 --- I ... 0.750 1 5 . 8 ~ 1 0 ~  2c 0.146 
12 .31 .33 ---- Perforated ---- 2d Perforated 
10 .30 .33 .225 

27 .50 .56 .290 - - -  _.__ .624 6 . 8  2c 

.235 

.136 

.288 

0.065 ,941 
_- .30 .30 1.134 "r": 1 ---- .420 

_ _  .46 .46 ---- Perforated _.-- 6.8  2d Perforated 
5 .30 . jl .135 .39 .05 ,413 15.8 _ _  .136 
13 .28 .28 ,109 .11 .015 .341 15.8 _ _  . n o  
0 .48 .50 .351 ._. _--- .787 8.8 2c .348 _ _ _ _ _ - ~  _- 

0.395 10.3~10~ -- 0.159 
.251 
,195 
.394 
1 320 
.306 

_ _  3/32 0.0160 24,750 7 0  0.36 0.36 0.156 0.46 ---- 
_ _  ,0159 25,200 27 .LO .55 .252 .37 0.09 ,630 10.9 

6 . 6  
.0160 24,500 20 .51 .57 ,386 .35 .11 .965 6.8  
,0160 24,250 26 . 2 3  .59 ,314 .31 .15 .784 6.8 
,0156 25 .OOO 15 .50 .51 ,306 .37 .09 .765 9.4 

_ _  ,0157 23,000 65 .40 .43 ,184 --- - - - - -. - - 
_. _ _  

~~ 

I C  .323 
.372 
.291 

. O X 1  24;400 0 . 44  .55 ,319 .36 
,0177 25,100 I C  



TABLE 111. - COMPARISON OF MATERIALS CONSTANT FOR ALUMINUM AND COLUMBIUM TARGETS 

( a )  Aluminum (356-T51) 

T a r g e t  Exper- Calculated Calculated Calculated 
(E/B  COS^ A )  

1 
3 
5 
7 
9 

Calculated 
2 /3  (E/B  COS^ A )  

27 
38 
53 
5 4  
66 

C a l c u l a t e d  
K 

69  
7 1  
79 
83 
8 4  
85 

31 1 . 6 0  0.819 I 0.685 1 .96  
37 1 .43  .935 .783 1.53 
40 1 .94  .7 70 .645 1 . 2 3  
4 1  1 .16  .935 .783 - 1 .24  

3.19 
1 . 7 9  
3.26 
1.35 
3.36 

2 .34  0 . 2 9 0 ~ 1 0 3  1 1 . 2 7 ~ 1 0 - ~  ' 
1 .92  .334X103 1 . 0 3 ~ 1 0 - ~  
1 .42  .344X103 1.00~10 -3 

- 1  148 . 34OX1O3 . 8 2 ~ 1 0 - 3  

3.00 
3.09 
1.68 
2 .69  
3.35 

3.26 
3.90 
3.08 
3.26 
2.57 
2.70 

1.36 
.764 

1 .425  
.762 

1.447 

1 .16  
1 .39  

1 . 1 9  
1.35 

.624 

1 . 3 4  
1 . 6 4  
1 .39  
1.80 
1.28 
1 .28  

2 .34  
2 . 3 5  
2 .29  
1 .78  
2.32 

2 .59  
2.22 
2 .70  
2 .26  
2 .47  

2 .44  
2.32 
2.22 
1.83 
2 . 0 1  
2.12 

Av.2.27 
- 

... 
0. 341X1O3 

.589x103 

.326x1O3 

.63dX103 

.585x103 

.256x1O3 

.49&1O3 . 62OX1O3 

.45ox1o3 

... 
. 641X103 
.646xlo3 
.58dX103 
.49ox1o3 
.517x1O3 

1.  GO-3 
1 . 3 7 ~ 1 0 ~ ~  
1. O O X ~ O - ~  
1. 25>(10-3 

1 . 5 7 ~ 1 0 - ~  
1 .2  
1.5 7 ~ 1 0 - ~  
1 . 2  9 ~ 1 0 - ~  
1 . 3 ~ 0 - ~  

( b )  Columbium - 1 p e r c e n t  z i r con ium 

I T a r g e t  ( E x p e r -  1 C a l c u l a t e d  I C a l c u l a t e d  
r 

I I 1 
cp = 1/2 1 cp = 2/3  ' cp = 1/2  cp = 2/3  ' 



L i q u i d  
o u t  

Armor \ 1 CS-25616 

F i g u r e  1. - F i n  and t u b e  r a d i a t o r .  

Figure 
C-63919 -M Inches  

2. - Impact c r a t e r  i n  t y p i c a l  r a d i a t o r  s e c t i o n .  F inned  aluminum 
armor over HS-25 t u b e .  
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N 
0 

Figure 3 .  - Fin and tube geometries. 

cs-23599 



High-pressure tapered coupling Blast chamber 

Launch tube . ' E l "  

Plastic 
cylinder t Saboted 

.rl model 

d m a 

0 10.000 20,000 30.000 

Velocity, f t  /see 

Figure 4. - Twenty-two caliber accelerated-reservoir light-gas gun. 

C - 63918 -M 



Figure 5. - Velocity and impact chambers. 

Figure 6. - Target holder with heater elements. 
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Ejecta  

-1.2 psec 0 psec +1.2 psec 

+2,5 psec +6.2 psec +11.1 psec 

+21.0 w e c  +33.4 psec +44.5 psec 

F igure  7. - Film sequence of a 1/8-inch g l a s s  sphere impacting a space r a d i a t o r  
segment a t  23,000 f e e t  pe r  second. 
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Lit 

D.B.D. 
h 
P 

C.D. 
t l  

Figure  8. - Notation 

l a  

Type 1 - With l i n e r  

l a  - c, N/D, N/S, N/P 
lb - C ,  W/D, N/S, N/P 
IC - C ,  W/D, A/S, N/P 
I d  - C,  W/D, I/S, N/P 
l e  - C,  W/P 

I . D .  
O.D. 
t 2  
t A  
BHN 
R.T. 
TAD 
TAR 
m 

Ins ide  diameter 
Outside diameter 
Liner th ickness  
Armor th ickness  
Br ine l l  hardness number 
Room temperature 
Target a x i s  d i sp laced  
Target a x i s  r o t a t e d  
F l a t  p l a t e  

Ins ide  diameter below dimple 
Height of dimple 
Cra te r  depth 
Cra te r  diameter 
Liner th ickness  

for t a r g e t  damage measurements. 

2a 

Armor 

2c 
C-63913-M 

Type 2 - Without l i n e r  

2a - c, N/D, N/S, N/P 

2d - c, W/P 

Zb - C,  W / D ,  N/S, N/€ 
2c - C,  W/D, I/S, N/P 

Damage code number 
C Cra te r  
N/D NO dimple 
W/D With dimple 
N/S NO spa11 
I/S Inner su r face  spa11 
A/S Armor i n t e r n a l  spa11 
N/P NO pe r fo ra t ion  
W/P With pe r fo ra t ion  

F igure  9. - Damage eva lua t ion  code f o r  sec t ioned  t a r g e t s .  
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I 
r -  

(a) Glass sphere, 3/32 inch; 
no per fora t ion ;  pene t ra t ion ,  
0.31 inch; l i n e r  dimpled. 

(b )  Glass sphere,  1/8 inch; 
per fora ted .  

Figure 10.  - Pro jec t i l e  s i z e  e f f ec t s  f o r  aluminum with HS-25 l i n e r  t a r g e t s .  
Armor th ickness ,  0.400 inch; l i n e r  thickness,  0.020 inch; average ve loc i ty ,  
23,250 f e e t  per second; temperature, 715' F. 

>.".<A>lT ..,"$ 

( a )  Room temperature; Br ine l l  (b) Temperature, 700' h'; B r ine l l  
hardness number, 53. hardness number, 20. 

Figure 11. - Target temperature e f f e c t s  for aluminum with HS-25 l i n e r  t a rge t s .  
Armor thickness 0.400 inch; l i n e r  thickness,  0.020 inch; glass sphere, 1/8 
inch; average ve loc i ty ,  23,300 f e e t  per  second; specimens per fora ted .  

25 



(a-1) Temperature, 400' F; Brinell  hardness number, 25. (a-2) Temperature, 700' F; Brinel l  hardness number, 20. 

( a )  View of crater  surface. 

Figure 12. - Target temperature e f fec ts  f o r  aluminum with HS-25 l i n e r  ta rge ts .  Armor thickness, 0.400 inch; l i n e r  thickness, 
0.020 inch; glass  project i le ,  3/32 inch; average velocity,  24,600 f e e t  per second. 



(b-1) Temperature, 400’ F; Brinel l  hardness (’0-2) Temperature, 700’ F; Br ine l l  hardness 
number, 25. number, 2 0. 

(b) Section view of c r a t e r  a t  maximum depth. 

Figure 12. - Concluded. Target temperature e f f ec t s  for aluminum with HS-25 l i n e r  t a rge t s .  
Armor thickness,  0.40 inch; l i n e r  thickness,  0.020 inch; glass  p ro jec t i l e ,  3/32 inch; 
average veloci ty ,  24,600 f e e t  per second. 



,';-b~-:o&l,: 

( a )  Irrpact angle ,  27'; c r a t e r  depth,  (h)  Impact angle ,  70'; c r a t e r  depth,  
0.252 i nch .  0.151 inch .  

F igu re  13 .  - Impact angle  e f f e c t s  f o r  aluminum wi th  HS-25 l i n e r  t a r g e t s .  Armor 
th i ckness ,  0.400 inch;  i n s i d e  diameter of aluminum, 0.500 inch; g l a s s  sphere ,  
5/32 inch; average v e l o c i t g ,  24,900 f e e t  per  second; room tempera ture .  

- -  -c I 1 

(a)  Pene t r a t ion ,  0.13 inch; (b) Pene t r a t ion ,  0.34 inch;  
impact angle ,  68'. impact angle ,  15'. 

Figure  14 .  - lmpact ang le  e f f e c t s  f o r  aluminum wi th  HS-25 l i n e r  t a r g e t s .  Armor 
th i ckness ,  0.400 inch;  i n s i d e  diameter of aluminum, 0.500 inch ;  g l a s s  sphere ,  
3/32 inch ;  dverage v e l o c i t y ,  24,450 f e e t  pe r  second; temperature,  700' F; no 
speciTen per fo ra t ion .  
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(a) Impact angle ,  27'; c r a t e r  depth,  0.252 inch .  (b)  Impact angle ,  70'; c r a t e r  depth, 0.15% inch .  

F igure  15. - Sect ion  view of c r a t e r .  Impact angle  e f f e c t s  f o r  aluminum with HS-25; 
a m o r  th ickness ,  0.400 inch;  i n s i d e  diameter  o f  aluminum, 0.500 inch;  glass sphere ,  
3/32 inch;  average ve loc i ty ,  24,900 f e e t  per  secondj  room temperature .  

29 



(a) Impact angle,  40'; no perforat ion;  pene t ra t ion ,  
0.150 inch.  

(b)  Impact angle ,  1.2'; perforated.  

Figure 16.  - Impact angle  e f f e c t s .  Armor thickness ,  0.200 inch; i n s i d e  
diameter of columbium, 0.460 inch; no Liner; glass sphere,  3/32 inch; 
average ve loc i ty ,  25,650 f e e t  per  second; temperature,  700' F. 
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(a) Columbium wall thickness, 0.20 inch; internal 
spalling; glass sphere, 3/32 inch. 

(b) Aluminum armor thickness, 0.40 inch; HS-25 
liner thickness, 0.02 inch; internal dimpling; 
glass sphere, 1/8 inch. 

Figure 17. - Internal tube damage. Equal weight per unit length of tube; no perforation. 
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C-64109-M 

(a) Aluminum armor thickness,  (b) Aluminum armor thickness,  0.47 inch; 
0.40 inch; HS-25 l i n e r  thick-  
ness, 0.02 inch; no i n t e r n a l  
spal l ing;  dimple on inside.  

no l i n e r ;  i n t e r n a l  spa l l ing .  

Figure 18. - Liner effects  of  aluminum ta rge t s .  Equal weight per  un i t  length 
of tube (approximately equal weight per uni t  length of rad ia tor ) ;  no speci- 
men perforation; glass sphere, 3/32 inch; average veloci ty ,  24,650 f e e t  per  
second; temperature, 715' F.  
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2-7 OCF3 -1": 

Figure 19. - Cross section of impact crater in unlined tube. 
Aluminum thickness, 0.47 inch; internal spallingj glass 
sphere, 3 / 5 2  inch; velocity, 25,350 feet per second; temp- 
erature, 700' F. 

Figure 80 .  - Typical impact crater section. Aluminum armor 
with HS-25 liner. 

33 



( a )  Sect ion  B. X300. 

(b) Sec t ion  A. XlZO. 

Figure  21. - Armor-liner i n t e r f a c e  photomicrographs (see f i g ,  20). 
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(a) Plate thickness, 0.320 inch; 
penetration, 0.134 inch; back 
spalling . 

(b) Wall thickness, 0.320 inch; inside diameter, 
0.460 inch3 penetration, 0.135 inch; no in- 
ternal spalling. 

Figure 22. - Target radius effects f o r  columbium targets. Glass sphere, 3/32 inch; 
average velocity, 24,500 feet per second; temperature, 700' F. 

(a) Wall thickness, 0.465 inchj 
inside diameter, 0.420 inch; 
penetration, 0.290 inch; no 
perforation. 

(b) Plate thickness, 0.446 inch; perforated. 

Figure 23. - Target radius effects f o r  aluminum targets with no liner. Glass sphere, 
3/32 inch; average velocity, 25,000 feet per second; temperature, 700' F. 
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(a) I n s i d e  d i ame te r ,  2.5 inches ;  p e n e t r a t i o n ,  0.351 inch ;  i n t e r n a l  s p a l l i n g .  (b) I n s i d e  d i ame te r ,  0.125 inch ;  p e n e t r a t i o n ,  
0.212 inch;  no s p a l l i n g .  

F i g u r e  24. - Tube r a d i u s  e f f e c t s .  Aluminum armor t h i c k n e s s ,  0.446 inch ;  no l i n e r ;  average  v e l o c i t y ,  24,000 f e e t  p e r  second; t e m p e r a t u r e ,  600' F .  



rigwe 27. - Tube radius effects. Crater for 0.125-inch-inside-diampter 
t a r g c t j  aluminum armor thiclmcss, 0.446 inch; no l i n e r ;  glass snhere, 
5/:32 inch; velocity,  22,600 f e e t  per second; tenperatwe; 700' F. 
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(b) Aluninum armor with HS-25 liner; inside (a) Columbium specimen; inside 
diameter, 0.460 inch; wall- diameter, 0.500 inch; wall. thickness, 
thickness, 0.200 inch; per- 0.400 inchj penetration, 0.315 inch. 
forated. 

Figure 28. - Comparison of equal unit weight aluminum and columbium targets. 
Glass sphere, 3/32 inch; average velocity, 24,800 feet per second; temp- 
erature, 700' F. 

(a) Aluminum armor with HS-25 
liner. Wall thickness, 0.40 
inchj liner thickness, 0.02 
inch; penetration, 0.306 inch. 

(b) Columbium specimen; wall 
thickness, 0.320 inch; 
penetration, 0.135 inch. 

Figure 29. - Comparison of equal protection schemes (ref. 1). Constant inside 
diameter. 
temperature, 715' F. 

Glass sphere, 3/32 inchj average velocity, 24,500 feet per Second; 
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Figure 30. - Variation of penetration depth with impact angle. 
Cast aluminum tubes; glass particle, 3/32 inch; velocity, 
25,000 feet per second. 

39 



I IlllIlIlIl1l111IIIll1lIIll ll1l1l11111111ll1111ll I Ill I1 I I1 I I 

0 20 40 

Temperature 
0 Room 
A 700' F 

(cos A )  2 / 3  

\ q 
53 

60 

7 

\ 
\ 

Impact angle, A, deg from normal 

\ 
\ 

\ 
80 100 

Figure 31. - Normalized var ia t ion of depth of penetration with 
impact angle. 
inch; velocity,  25,000 f e e t  per second. 

Cast aluminum tubes; glass  par t ic le ,  3/32 
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Figure  32. - V a r i a t i o n  of depth  of p e n e t r a t i o n  w i t h  t a r g e t  
tempera ture .  C a s t  aluminum tubes ;  normal impact; g l a s s  
p a r t i c l e ,  3/32 inch; v e l o c i t y ,  25,000 f e e t  p e r  second. 
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F igu re  33. - V a r i a t i o n  of depth  of p e n e t r a t i o n  w i t h  tube  ra- 
d i u s .  Temperature, 700' F; glass p a r t i c l e ,  3/32 inch; ve- 
l o c i t y ,  25,000 f e e t  pe r  second. 
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Figure 34. - Var ia t ion  of normalized pene t r a t ion  wi th  tube 
Temperature, 7 ' ~ 0 ~  F; g l a s s  p a r t i c l e ,  3/32 inch; radius. 
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